Microbial Conversion of Milbemycins:
 Oxidation of Milbemycin \mathbf{A}_{4} and Related Compounds at the C-25 Ethyl Group by Circinella umbellata and Absidia cylindrospora

Keiko Nakagawa, Yoshihisa Tsukamoto, ${ }^{\dagger}$ Kazuo Sato ${ }^{\dagger}$ and Akio Torikata
Biomedical Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140, Japan
${ }^{\dagger}$ Agroscience Research Laboratories, Sankyo Co., Ltd., 1041 Yasu, Yasu-cho, Shiga 520-23, Japan

(Received for publication February 9, 1995)

Abstract

Microbial oxidation of milbemycin A_{4} at the $\mathrm{C}-25$ ethyl group was performed. Milbemycin A_{4} was converted to 31 - and 32 -hydroxy derivatives by Circinella umbellata SANK 44272 along with 24 - and 30 -hydroxy derivatives. Related compounds, 5 -ketomilbemycin $\mathrm{A}_{4} 5$-oxime and 13β fluoromilbemycin A_{4} were similarly converted to the hydroxylated compounds by this microorganism. Absidia cylindrospora SANK 31472 converted milbemycin A_{4} to the corresponding 32-oic acid, 24-hydroxy derivative and a few oxygenated compounds including at the C-25 ethyl group.

Milbemycins are a family of sixteen-membered macrolides produced by Streptomyces hygroscopicus subsp. aureolacrimosus, ${ }^{1 \sim 3)}$ and exhibit potent antiparasitic and pesticidal activities.
Since the discovery of this unique macrolide, intensive efforts have been directed towards chemical modification mainly at the $\mathrm{C}-5$ and $\mathrm{C}-13$ position of milbemycins in order to improve this biological quality. Some of the 13-alkoxy derivatives of milbemycins, which were synthesized from natural milbemycins via 13-hydroxy or 13-iodo derivatives, were found to exhibit excellent anthelmintic properties. ${ }^{4,5)}$
As part of our studies on the derivatization of milbemycins, a few years ago we began investigating the microbial conversion of milbemycins, and have consequently demonstrated that the $\mathrm{C}-13$ position and all the methyl groups of milbemycin A_{4} were hydroxylated and the 14,15 -double bond was epoxidated by zygomycetes or actinomycetes. ${ }^{6 \sim 11)}$ However, we have not found hydroxylated compounds at the $\mathrm{C}-25$ ethyl group of milbemycin $\mathrm{A}_{4}(\mathbf{1 a})$ which would be important intermediates to synthesize new milbemycin derivatives. Merck's group recently reported hydroxylation of the sec-butyl group at the C-25 position of 22,23 -dihydroavermectin Bla aglycone and avermectin by two actinomycetes, Saccharopolyspora erythrea ATCC 11635 and Amycolata autotrophica ATCC 35203. ${ }^{12,13)}$ We independently concentrated our screening studies on finding compounds which were modified at the C-25 ethyl group of milbemycin A_{4} (1a).

Fig. 1. The structures of milbemycin A_{4}, related compounds and conversion products.

Compound	R^{1}	R^{2}	R^{3}	R^{4}	R^{5}	R^{6}	R^{7}
1a	H	CH_{3}	H	H	H	H	OH
1b	H	CH_{3}	H	H	OH	H	OH
1 c	H	CH_{3}	OH	H	H	H	OH
1d	H	CH_{3}	H	OH	H	H	OH
1 e	OH	CH_{3}	H	H	H	H	OH
If	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	H	H	H	OH
1 g	H	COOH	H	H	H	H	OH
1h	OH	CH_{3}	OH	H	H	H	OH
1 i	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	H	OH	H	OH
2 a	H	CH_{3}	H	H	H	NOH	
2 b	H	CH_{3}	H	H	OH	NOH	
2 c	H	CH_{3}	OH	H	H	NOH	
2 d	H	CH_{3}	H	OH	H	NOH	
2 e	OH	CH_{3}	H	H	H		
$2 f$	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	H	H	NOH	
3 a	H	CH_{3}	H	H	F	H	OH
3c	H	CH_{3}	OH	H	F	H	OH
3d	H	CH_{3}	H	OH	F	H	OH
3 f	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	H	F	H	OH
4 a	H	CH_{3}	H	H	H	0	
5a	H	CH_{3}	H	H	OH	0	
$5{ }^{5}$	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	H	OH	0	
6 c	H	CH_{3}	OH	H	OH	OH H	
6 d	H	CH_{3}	H	OH	OH	OH H	
6 e	OH	CH_{3}	H	H	OH	OH H	
6 f	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	H	OH	OH	H

The present paper deals with oxidation of the $\mathrm{C}-25$ ethyl group of milbemycin A_{4} and related compounds by Circinella umbellata SANK 44272 and Absidia cylindrospota SANK 31472. The structures of milbemycins and conversion products are shown in Fig. 1.

Materials and Methods

Materials

Milbemycin A_{4} (1a) was isolated as described previously. ${ }^{1)}$ 5-Ketomilbemycin A_{4} 5-oxime (2a), ${ }^{14)} 13 \beta$ fluoromilbemycin $\mathrm{A}_{4}(\mathbf{3 a}),{ }^{15)}$ 5-ketomilbemycin A_{4} (4a), ${ }^{14)}$ and 13β-hydroxy-5-ketomilbemycin $\mathrm{A}_{4}(5 a)^{16)}$ were prepared from milbemycin A_{4} according to the literature procedures.

Culture Maintenance

Stock cultures of C. umbellata SANK 44272 and A. cylindrospora SANK 31472 were maintained on potato dextrose agar (Difco) and stored at $4^{\circ} \mathrm{C}$. These stock cultures were refreshed every half year.

Culture Medium

MY medium consisted of glucose 1.0%, Polypepton (Nihonseiyaku) 0.5\%, yeast extract (Difco) 0.3\%, and malt extract (Difco) 0.3%, pH 6.3~6.5.

Microbial Conversion of Milbemycins

The spores or mycelia from the slants were used to inoculate into either 20 ml medium $/ 100-\mathrm{ml}$ Erlenmeyer flasks or 100 ml medium $/ 500-\mathrm{ml}$ Erlenmeyer flasks. The flasks were incubated at $200 \sim 220 \mathrm{rpm}$ on a rotary shaker for a period of 2 days at $26^{\circ} \mathrm{C}$. Then the substrate ($5 \%(\mathrm{w} / \mathrm{v})$ in 1,4 -dioxane) was added to a final concentration of $500 \mu \mathrm{~g} / \mathrm{ml}$ of milbemycin A_{4} (1a) or $250 \mu \mathrm{~g} / \mathrm{ml}$ of 5 -ketomilbemycin $\mathrm{A}_{4} 5$-oxime (2a), 13β-fluoromilbemycin A_{4} (3a), 5-ketomilbemycin A_{4} (4a) and 13β -hydroxy-5-ketomilbemycin A_{4} (5a), and cultivation was continued for 7 additional days.

HPLC Analysis

Analytical HPLC was performed using a Nova pak C_{18} (Waters, $8 \times 100 \mathrm{~mm}$) column. Elution was achieved with one of two solvent systems. System 1 consisted of acetonitrile-water ($75: 25$), with a flow rate of $1.5 \mathrm{ml} /$ minute. System 2 consisted of acetonitrile - water (55:45), with a flow rate of $1.0 \mathrm{ml} /$ minute. UV-detection was performed at 243 nm .

Preparative HPLC

Preparative HPLC was performed on a Sensyu pak ODS-H-5251 (Sensyu kagaku, $20 \times 250 \mathrm{~mm}$, flow rate of $13 \sim 15 \mathrm{ml} /$ minute $)$ or Sensyu pak ODS-H-4251 (10×250 mm , flow rate of $4 \mathrm{ml} /$ minute) with a mixture of acetonitrile - water ($40: 60 \sim 70: 30$). UV-detection was performed at 243 nm .

Isolation of the Conversion Products

The culture broth was filtered and the filtrate was extracted with EtOAc. The mycelium was extracted with $80 \% \mathrm{MeOH}$. The MeOH extract was then evaporated and the resulting aqueous solution was extracted with EtOAc. The combined EtOAc extracts were evaporated and chromatographed on silica gel (Wakogel C-100, $20 \sim 90 \%$ EtOAc in n-hexane as eluent). Fractions were collected and analyzed by HPLC. Similar fractions were combined and subsequently chromatographed on reverse phase silica gel (Fuji-gel hanbai ODSQ3, $0 \sim 33 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$) or applied to preparative HPLC.

Separation of 24 -Hydroxymilbemycin A_{4} and 32Hydroxymilbemycin A_{4}

To a solution of a mixture (92.2 mg), obtained from C. umbellata incubation broth with milbemycin A_{4} (1a) after purification of reverse phase silica gel chromatography in dry DMF (2 ml) was added t-butyldimethylsilylchloride (30 mg) and imidazole (12 mg). After stirring at room temperature for 1 hour, the reaction mixture was poured into water, and extracted with ethyl acetate. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by preparative TLC (Merck Art. No. 5744: n-hexane- $\operatorname{EtOAc}(5: 1)$) to give 32-hydroxy-32,5-di-O-t-butyldimethylsilylmilbemycin A_{4} and 24-hydroxy-5-O-t-butyldimethylsilylmilbemycin A_{4}. Each compound was desilylyzed (p-toluenesulphonic acid and methanol).

Spectral Analysis

IR spectra were recorded wih a Nicolet $5 \mathrm{~S} \times \mathrm{C}$ FT-IR spectrophotometer. NMR spectra were measured at 270 MHz on a JEOL JNM GX 270 spectrometer. Mass spectra were measured on a JEOL JMS-D $300 \mathrm{spec}-$ trometer.

Results and Discussion

Microbial Conversion of Milbemycin A_{4}
 by C. umbellata SANK 44272

A few strains of zygomycetes were found to convert milbemycin $\mathrm{A}_{4}(\mathbf{1 a})$ to 13β-hydroxymilbemycin A_{4} (1b), 30-hydroxymilbemycin $\mathrm{A}_{4}(\mathbf{1 c})$ and three other unknown compounds (1d, 1e, and 1f) on the HPLC. Circinella umbellata SANK 44272 was chosen to be used in the following preparative-scale study for characterizing new converted products.

Milbemycin A_{4} (500 mg) was added to the growing culture (ten $500-\mathrm{ml}$ flasks) of Circinella umbellata SANK 44272 and the incubation was continued. The culture broth was extracted and chromatographed on normal and reverse phase silica gel chromatographies as described in Materials and Methods. 30-Hydroxymilbemy-
$\operatorname{cin} \mathrm{A}_{4}(\mathbf{1 c}, 73.0 \mathrm{mg}), \mathbf{1 e}(3.7 \mathrm{mg})$, 1f $(10.7 \mathrm{mg})$ and a mixture of $\mathbf{1 d}$ and $1 \mathrm{f}(92.2 \mathrm{mg})$ were obtained. The mixture was derivatized to t-butyldimethylsilylmilbemycins, followed by purification and desilylation to give $\mathbf{1 d}$ (30.0 mg) and $\mathbf{1 f}(38.2 \mathrm{mg})$ as shown in Materials and Methods. From the analyses of MS and ${ }^{1} \mathrm{H}$ NMR spectra, 1d, 1e, and $\mathbf{1 f}$ were determined as $24-$, 31 - and 32-hydroxymilbemycin A_{4}, respectively.

Other strains of zygomycetes which converted milbe$\operatorname{mycin} \mathrm{A}_{4}$ to $\mathbf{1 b}, \mathbf{1 c}, \mathbf{1 d}, 1 \mathrm{e}$ and $\mathbf{1 f}$ are shown in Table 1, along with the conversion efficiency determined by HPLC analysis.

Application of C. umbellata SANK 44272 or Related Compounds

5 -Ketomilbemycin $\mathrm{A}_{4} 5$-oxime (2a), 13β-fluoromilbemycin A_{4} (3a), 5-ketomilbemycin A_{4} (4a) and 13β -hydroxy-5-ketomilbemycin \mathbf{A}_{4} (5a) were examined as substrates of C. umbellata SANK 44272.

5 -Ketomilbemycin $\mathrm{A}_{4} 5$-oxime ($2 \mathrm{a}, 500 \mathrm{mg}$) in twenty $500-\mathrm{ml}$ flasks was converted to $2 \mathrm{c}, 2 \mathrm{~d}, 2 \mathrm{e}$ and 2 f by C. umbellata SANK 44272, which were, after being purified by silica gel column chromatography and preparative HPLC, determined as the corresponding 30-, 24-, 31- and 32-hydroxy compounds (2c, 7.5 mg ; 2d, $46.2 \mathrm{mg} ; \mathbf{2 e}, 1.1 \mathrm{mg} ; \mathbf{2 f}, 6.9 \mathrm{mg}$) respectively based on their MS and ${ }^{1} \mathrm{H}$ NMR spectra. The 30 -hydroxy compound ($\mathbf{2 c}$) was previously isolated from the conversion broth of 2a by Amycolata autotrophica ATCC 35204 ${ }^{6}$. The other three products were newly obtained in this study.
13β-Fluoromilbemycin A_{4} ($\mathbf{3 a}, 45 \mathrm{mg}$) in nine $100-\mathrm{ml}$ Erlenmeyer flasks was similarly subjected to conversion by C. umbellata SANK 44272 to give 13β-fluoro-30hydroxymilbemycin $\mathrm{A}_{4}(\mathbf{3 c}, 4.8 \mathrm{mg})$, and two unknown compounds, $\mathbf{3 d}$ and $\mathbf{3 f}$. After purification by preparative HPLC, 3d (4.9 mg) and $\mathbf{3 f}(4.6 \mathrm{mg})$ were revealed as

Table 1. Strains converting milbemycin A_{4} (1a) to 31-hydroxymilbemycin A_{4} (1e), 32-hydroxymilbemycin A_{4} (1f), 24-hydroxymilbemycin A_{4} (1d), 13β-hydroxymilbemycin A_{4} (1b) and 30-hydroxymilbemycin A_{4} (1c).

Conversion efficiency $^{\text {a }}$						

[^0]13β-fluoro-24-hydroxymilbemycin A_{4} and 13β-fluoro-32-hydroxymilbemycin A_{4}.

No conversion product was detected in the broth containing 5-ketomilbemycin A_{4} (4a).

Finally, conversion of 13β-hydroxy-5-ketomilbemycin A_{4} (5a) to the corresponding 31- or 32-hydroxylated derivatives by using C. umbellata SANK 44272 was investigated. The conversion mixtures showed multicomponents and we isolated six new conversion products. However, there were insufficient spectral data to assign definitive structures to these products.

Microbial Conversion of Milbemycin A_{4} (1a)

by A. cylindrospora SANK 31472
The HPLC pattern of the A. cylindrospora SANK 31472 incubation broth with milbemycin A_{4} was different from those of other microorganism conversion broths. In addition to small amounts of $30-, 13 \beta-, 31$ - and 32-hydroxymilbemycin A_{4}, 24-hydroxymilbemycin A_{4} and three unknown conversion products ($\mathbf{1 g}, \mathbf{1 h}$ and $\mathbf{1 i}$) were detected by HPLC. Bioconversion of milbemycin A_{4} (1a) was carried out in nine $500-\mathrm{ml}$ flasks (milbemycin $\mathrm{A}_{4}, 450 \mathrm{mg}$). The conversion products were purified by normal and reverse phase silica gel chromatography, and the structures were characterized. $1 \mathrm{~g}(15.3 \mathrm{mg})$ was the major product and was identified as milbemycin A_{4} 32 -oic acid, and $\mathbf{1 h}(8.5 \mathrm{mg})$ and $\mathbf{1 i}(5.6 \mathrm{mg})$ were determined as 30,31-dihydroxymilbemycin A_{4} and $13 \beta, 32$-dihydroxymilbemycin A_{4}, respectively, in addition to 24-hydroxymilbemycin $\mathrm{A}_{4}(\mathbf{1 d}, 6.3 \mathrm{mg})$ from the analyses of MS and ${ }^{1} \mathrm{H}$ NMR spectra.

Application of A. cylindrospora SANK 31472

to the Conversion of Related Compounds
Microbial conversion of 13β-hydroxy- 5 -ketomilbemycin $\mathrm{A}_{4}(5 a, 105 \mathrm{mg})$ was performed in twenty one $100-\mathrm{ml}$ Erlenmeyer flasks by A. cylindrospora SANK 31472. Five conversion products were detected by analytical HPLC. They were isolated from the extracts of culture broth by preparative HPLC and determined as $13 \beta, 32$-dihydroxy-5-ketomilbemycin $\mathbf{A}_{4}(\mathbf{5 f}, 2.7 \mathrm{mg})$, 5-epi-13 $\beta, 30$-dihydroxymilbemycin $\mathrm{A}_{4}(\mathbf{6 c}, 1.7 \mathrm{mg})$, 5-epi-13 $\beta, 24$-dihydroxymilbemycin $\mathrm{A}_{4}(6 \mathrm{~d}, 1.4 \mathrm{mg})$, 5 -epi$13 \beta, 31$-dihydroxymilbemycin $\mathrm{A}_{4}(6 e, 4.1 \mathrm{mg})$ and 5-epi$13 \beta, 32$-dihydroxymilbemycin $\mathrm{A}_{4}(6 f, 8.5 \mathrm{mg})$ from the analyses of MS and ${ }^{1} \mathrm{H}$ NMR spectra.

The retention times are listed in Table 2.
In conclusion, the microbial conversion of milbemycin A_{4} by using C. umbellata SANK 44272 has enabled us to obtain 32- and 31-hydroxymilbemycin A_{4}. These compounds will enable us in turn to synthesize new

Table 2. HPLC retention times of milbemycins and conversion products.

Compound ${ }^{\text {a }}$		HPLC Rt's ${ }^{\text {b }}$ (minutes)		Compound ${ }^{\text {a }}$		HPLC Rt's ${ }^{\text {b }}$ (minutes)	
		System 1	System 2			stem 1	System 2
1a	Milbemycin A_{4}	16.07		2 e	31-Hydroxy-5-ketomilbemycin A_{4} 5-oxime	5.63	26.57
1b	133-Hydroxymilbemycin A_{4}	3.50	10.86	$2 f$	32-Hydroxy-5-ketomilbemycin A_{4} 5-oxime	5.27	24.78
1c	30-Hydroxymilbemycin A_{4}	3.08	8.91	3a	13β-Fluoromilbemycin A_{4}	8.84	-
1d	24-Hydroxymilbemycin A_{4}	4.76	16.52	3c	13ß-Fluoro-30-hydroxymilbemycin A_{4}	2.55	6.30
1e	31-Hydroxymilbemycin A_{4}	5.17	19.19	3d	13ß-Fluoro-24-hydroxymilbemycin A_{4}	3.23	9.71
1 f	32-Hydroxymilbemycin A_{4}	4.85	17.88	3f	13ß-Fluoro-32-hydroxymilbemycin A_{4}	3.55	11.75
1 g	Milbemycin $\mathrm{A}_{4} 32$-oic acid	4.20	16.76	4a	5-Ketomilbemycin A_{4}	25.61	-
1h	30,31-Dihydroxymilbemycin A_{4}	3.33	9.18	5 a	13ß-Hydroxy-5-ketomilbemycin A_{4}	22.44	4.88
1 i	13ß,32-Dihydroxymilbemycin A_{4}	2.22	4.27	$5 ¢$	13 $\beta, 32$-Dihydroxy-5-ketomilbemycin A_{4}	7.15	2.72
2a	5 -Ketomilbemycin A_{4} 5-oxime	18.91	--	6 c	5-epi-13 $\beta, 30$-Dihydroxymilbemycin A_{4}	2.03	3.60
2b	13β-Hydroxy-5-ketomilbemycin A_{4} 5-oxime	e 3.84	14.75	6 d	5-epi-13 $\beta, 24$-Dihydroxymilbemycin A_{4}	2.13	3.97
2 c	30-Hydroxy-5-ketomilbemycin $\mathrm{A}_{4} 5$-oxime	3.22	10.65	6 e	5-epi-13ß,31-Dihydroxymilbemycin A_{4}	2.28	4.54
$2 d$	24-Hydroxy-5-ketomilbemycin A_{4} 5-oxime	5.14	22.17	$6 f$	5-epi-13 , 32-Dihydroxymilbemycin A_{4}	2.44	5.17

${ }^{\text {a }}$ a: Substrate, $\mathbf{b} \sim \mathbf{i}$: porducts, ${ }^{\text {b }}$ Rt's relative to $\mathbf{1 b}$.
milbemycin derivatives with long side chains at C-25.
Milbemycins A_{4}, 5-ketomilbemycin $\mathrm{A}_{4} 5$-oxime and 13β-fluoromilbemycin A_{4} were similarly converted to the corresponding 32- or 31-hydroxylated products by C. umbellata.
A. cylindrospora was also determined to be able to oxidize the $\mathrm{C}-31$ and $\mathrm{C}-32$ positions of milbemycin A_{4} and related compounds.

Finally, compared with milbemycins, the oxygenated compounds newly obtained in this study did not improve their biological properties.

Physico-chemical Properties

24-Hydroxymilbemycin A_{4} (1d): MS $m / z: 558$ (M, $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{8}$), 522, 430, 412, 314, 280, 261 211, 183, 151; HREI-MS found: 558.3203, calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{8}$: 558.3193; IR (KBr): $3650 \sim 3200,2967$, 2926, 2876, $1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81 \sim 0.94$ $(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 1.00\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.02(3 \mathrm{H}$, $\left.\mathrm{t}, J=6.6 \mathrm{~Hz}, 32-\mathrm{H}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{s}, 30-\mathrm{H}_{3}\right), 1.22 \sim 1.95(9 \mathrm{H}$, $\left.\mathrm{m}, 13-\mathrm{H}, 18-\mathrm{H}, 20-\mathrm{H}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 31-\mathrm{H}_{2}\right), 1.53(3 \mathrm{H}$, s, $\left.29-\mathrm{H}_{3}\right), 1.88\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right), 1.99 \sim 2.14(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H})$, $2.14 \sim 2.31\left(3 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 16-\mathrm{H}_{2}\right), 2.31 \sim 2.49(2 \mathrm{H}, \mathrm{m}$, $5-\mathrm{OH}, 12-\mathrm{H}), 3.27(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{dd}, J=2.9$, $9.3 \mathrm{~Hz}, 25-\mathrm{H}), 3.58(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}$, $6-\mathrm{H}), 3.99(1 \mathrm{H}$, brs, $7-\mathrm{OH}), 4.29(1 \mathrm{H}$, brs, $5-\mathrm{H})$, $4.60 \sim 4.78\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 4.95(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}, 15-\mathrm{H})$, $5.27 \sim 5.44(3 H, \mathrm{~m}, 3-\mathrm{H}, 11-\mathrm{H}, 19-\mathrm{H}), 5.68 \sim 5.91(2 \mathrm{H}$, m, 9-H, 10-H).

31-Hydroxymilbemycin A_{4} (1e): MS $m / z: 558$ (M, $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{8}$), 522, 430, 412, 280, 211, 183, 151; HREI-MS found: 555.3189, calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{8}$: 558.3193; IR (KBr): 3650~3100, 2967, 2927, 2868, $1717 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82 \sim 0.96(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H})$, $0.89\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right), 1.01(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, $\left.28-\mathrm{H}_{3}\right), 1.31 \sim 1.91\left(8 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 18-\mathrm{H}, 20-\mathrm{H}, 22-\mathrm{H}_{2}\right.$, $\left.23-\mathrm{H}_{2}, 24-\mathrm{H}\right), 1.32\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 32-\mathrm{H}_{3}\right), 1.53$ $\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.87\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right), 2.03 \sim 2.09(1 \mathrm{H}, \mathrm{m}$, $20-\mathrm{H}), 2.17 \sim 2.47\left(5 \mathrm{H}, \mathrm{m}, 5-\mathrm{OH}, 12-\mathrm{H}, 13-\mathrm{H}, 16-\mathrm{H}_{2}\right)$, $3.04(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, 25-\mathrm{H}), 3.27(1 \mathrm{H}, \mathrm{q}, J=2.4 \mathrm{~Hz}$, $2-\mathrm{H}), 3.49 \sim 3.60(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.90 \sim 4.00(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$, $7-\mathrm{OH}, 31-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, 5-\mathrm{H}), 4.62 \sim 4.74$ $\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 4.95(1 \mathrm{H}, \mathrm{dd}, J=6.9,8.1 \mathrm{~Hz}, 15-\mathrm{H})$, $5.26 \sim 5.44(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 11-\mathrm{H}, 19-\mathrm{H}), 5.70 \sim 5.83(2 \mathrm{H}$, $\mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H})$.

32-Hydroxymilbemycin A_{4} (1f): MS $m / z: 558$ (M, $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{8}$), 522, 430, 412, 314, 280, 211, 183, 151; HREI-MS found: 558.3205, calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{8}$: 558.3193; IR (KBr): 3650~3100, 2953, 2925, 2875, $1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.80 \sim 0.96$ $(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right), 1.01(3 \mathrm{H}$, d, $\left.J=6.9 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.33 \sim 2.05(11 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 18-\mathrm{H}$, $\left.20-\mathrm{H}_{2}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}, 31-\mathrm{H}_{2}\right), 1.87\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right)$, $1.53\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 2.17 \sim 2.51(5 \mathrm{H}, \mathrm{m}, 5-\mathrm{OH}, 12-\mathrm{H}$, $\left.13-\mathrm{H}, 16-\mathrm{H}_{2}\right), 3.26(1 \mathrm{H}, \mathrm{q}, J=2.4 \mathrm{~Hz}, 2-\mathrm{H}), 3.44(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{\mathrm{d}}=2.8, J_{\mathrm{t}}=9.3 \mathrm{~Hz}, 25-\mathrm{H}\right), 3.53 \sim 3.64(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H})$, $3.83\left(2 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}, 32-\mathrm{H}_{2}\right), 3.96(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}$, $6-\mathrm{H}), 3.97(1 \mathrm{H}$, br s, $7-\mathrm{OH}), 4.29(1 \mathrm{H}$, br s, $5-\mathrm{H}), 4.62 \sim$ $4.74\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 4.96(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 15-\mathrm{H})$, $5.22 \sim 5.44(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 11-\mathrm{H}, 19-\mathrm{H}), 5.69 \sim 5.84(2 \mathrm{H}$, m, 9-H, $10-\mathrm{H}$).

24-Hydroxy-5-ketomilbemycin $\mathrm{A}_{4} 5$-oxime (2d): MS $m / z: 571\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{45} \mathrm{NO}_{8}\right), 553,292,211,183,151$; HREI-MS: found: 571.3143, calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{NO}_{8}$: 571.3145; IR (KBr): 3650~3100, 2967, 2927 2876, $1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(1 \mathrm{H}, \mathrm{q}$,
$J=12.1 \mathrm{~Hz}, 18-\mathrm{H}), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.05$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 32-\mathrm{H}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{s}, 30-\mathrm{H}_{3}\right), 1.41(1 \mathrm{H}$, $\mathrm{t}, J=11.7 \mathrm{~Hz}, 20-\mathrm{H}), 1.49 \sim 1.94(8 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 18-\mathrm{H}$, $\left.22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 31-\mathrm{H}_{2}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.94(3 \mathrm{H}, \mathrm{q}$, $\left.J=0.8 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 2.05 \sim 2.12(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.17 \sim 2.27$ ($3 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 16-\mathrm{H}_{2}$), $2.37 \sim 2.50(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 3.35$ $(1 \mathrm{H}, \mathrm{dd}, J=3.2,10.1 \mathrm{~Hz}, 25-\mathrm{H}), 3.37 \sim 3.41(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $3.55 \sim 3.65(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 4.65 \sim 4.81\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right)$, $4.67(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 4.92 \sim 4.98(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 5.34 \sim 5.45$ $(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 19-\mathrm{H}), 5.72 \sim 5.81(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 10-\mathrm{H})$, $5.87\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}}=11.3, J_{\mathrm{t}}=2.0 \mathrm{~Hz}, 9-\mathrm{H}\right)$.

31-Hydroxy-5-ketomilbemycin A_{4} 5-oxime (2e): MS $m / z: 571\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{45} \mathrm{NO}_{8}\right), 553,292,211,183,151$; HREI-MS found: 571.3160, calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{NO}_{8}$: 571.3145; IR (KBr): 3650~3100, 2954, 2925, 2855, $1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84 \sim 0.97$ $(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 0.89\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right), 1.01(3 \mathrm{H}$, $\left.\mathrm{d}, J=6.4 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.31 \sim 2.10(9 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 18-\mathrm{H}$, $\left.20-\mathrm{H}_{2}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}\right), 1.33(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$, $\left.32-\mathrm{H}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.95(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}$, $\left.26-\mathrm{H}_{3}\right), 2.18 \sim 2.27\left(3 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 16-\mathrm{H}_{2}\right), 2.38 \sim 2.52$ $(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 3.05(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}, 25-\mathrm{H}), 3.37 \sim$ $3.41(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.50 \sim 3.61(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.90 \sim 3.97$ $(1 \mathrm{H}, \mathrm{m}, 31-\mathrm{H}), 4.65 \sim 4.81\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 4.67(1 \mathrm{H}, \mathrm{s}$, $6-\mathrm{H}), 4.92 \sim 4.97(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 5.33 \sim 5.46(2 \mathrm{H}, \mathrm{m}$, $11-\mathrm{H}, 19-\mathrm{H}), 5.72 \sim 5.91$ ($3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 9-\mathrm{H}, 10-\mathrm{H}$).

32-Hydroxy-5-ketomilbemycin A_{4} 5-oxime (2f): MS $\mathrm{m} / \mathrm{z}: 571\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{45} \mathrm{NO}_{8}\right), 553,537,292,211,183,151$; HREI-MS: found: 571.3134, calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{NO}_{8}$: 571.3145; IR (KBr): 3650~3100, 2955, 2926, 2875, $1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84 \sim 0.98$ $(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right), 1.02(3 \mathrm{H}$, d, $\left.J=6.6 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.35 \sim 2.05(11 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 18-\mathrm{H}$, $\left.20-\mathrm{H}_{2}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}, 31-\mathrm{H}_{2}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right)$, $1.94\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right), 2.15 \sim 2.52(4 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 13-\mathrm{H}$, $\left.16-\mathrm{H}_{2}\right), 3.35 \sim 3.39(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.44\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}}=2.4\right.$, $\left.J_{1}=9.5 \mathrm{~Hz}, 25-\mathrm{H}\right), 3.56 \sim 3.63(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.83 \sim 3.85$ $\left(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{OH}, 32-\mathrm{H}_{2}\right), 4.66(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 4.66 \sim 4.80(2 \mathrm{H}$, $\left.\mathrm{m}, 27-\mathrm{H}_{2}\right), 4.93 \sim 5.00(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 5.28 \sim 5.46(2 \mathrm{H}$, $\mathrm{m}, 11-\mathrm{H}, 19-\mathrm{H}), 5.71 \sim 5.90(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 9-\mathrm{H}, 10-\mathrm{H})$, $7.68(1 \mathrm{H}, \mathrm{s}, 5=\mathrm{NOH})$.
13β-Fluoro-24-hydroxymilbemycin A_{4} (3d): MS m/z: $576\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{45} \mathrm{FO}_{8}\right), 558,448,428,332,279,266$, 211, 183, 151; HREI-MS found: 576.3097, calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{FO}_{8}$: 576.3098; IR (KBr): 3650~3100, 2971, 2932, 2875, $1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 0.92(1 \mathrm{H}, \mathrm{q}, J=12.1 \mathrm{~Hz}, 18-\mathrm{H}), 1.04(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.32-\mathrm{H}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{s}, 30-\mathrm{H}_{3}\right), 1.16(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, $\left.28-\mathrm{H}_{3}\right), 1.39(1 \mathrm{H}, \mathrm{t}, J=11.7 \mathrm{~Hz}, 20-\mathrm{H}), 1.50 \sim 1.92(7 \mathrm{H}$, $\left.\mathrm{m}, 18-\mathrm{H}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 31-\mathrm{H}_{2}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.88$
$\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right), 2.07 \sim 2.11(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.30 \sim 2.36$ $\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 2.57 \sim 2.67(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 3.26 \sim 3.28$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{dd}, J=2.5,10.3 \mathrm{~Hz}, 25-\mathrm{H})$, $3.56 \sim 3.64(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.94(1 \mathrm{H}$, br s, $7-\mathrm{OH}), 3.97$ $(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 6-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 5-\mathrm{H})$, $4.40(1 \mathrm{H}, \mathrm{dd}, J=10.3,47.9 \mathrm{~Hz}, 13-\mathrm{H}), 4.68(1 \mathrm{H}, \mathrm{dd}$, $J=2.0,14.7 \mathrm{~Hz}, 27-\mathrm{H}), 4.70(1 \mathrm{H}, \mathrm{dd}, J=2.0,14.7 \mathrm{~Hz}$, $27-\mathrm{H}), 5.26 \sim 5.38(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 15-\mathrm{H}, 19-\mathrm{H}), 5.40(1 \mathrm{H}$, s, $3-\mathrm{H}), 5.76 \sim 5.88(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H})$.
13β-Fluoro-32-hydroxymilbemycin A_{4} (3f): MS m / z : $576\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{45} \mathrm{FO}_{8}\right), 558,448,428,332,279,266,211$, 183; HREI-MS found: 576.3083, calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{FO}_{8}$: 576.3098; IR (KBr): 3650~3100, 2966, 2928, 2873, $1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.4 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right), 0.84 \sim 0.97(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 1.16(3 \mathrm{H}$, $\left.\mathrm{d}, J=6.8 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.25 \sim 1.80(9 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}, 20-\mathrm{H}$, $\left.22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}, 31-\mathrm{H}_{2}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.87$ $\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right), 1.99 \sim 2.10(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.26 \sim 2.37$ $\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 2.55 \sim 2.67(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 3.25 \sim 3.28$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.44\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}}=2.9, J_{\mathrm{t}}=9.31 \mathrm{~Hz}, 25-\mathrm{H}\right)$, $3.50 \sim 3.70(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.81 \sim 3.85\left(2 \mathrm{H}, \mathrm{m}, 32-\mathrm{H}_{2}\right)$, $3.91(1 \mathrm{H}$, br s, $7-\mathrm{OH}), 3.96(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 6-\mathrm{H})$, $4.25 \sim 4.32(1 \mathrm{H}$, br s, $5-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{dd}, J=10.3,47.9 \mathrm{~Hz}$, $13-\mathrm{H}), 4.62 \sim 4.76\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 5.20 \sim 5.33(3 \mathrm{H}, \mathrm{m}$, $11-\mathrm{H}, 15-\mathrm{H}, 19-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.76 \sim 5.90(2 \mathrm{H}$, m, $9-\mathrm{H}, 10-\mathrm{H}$).

Milbemycin A_{4} 32-oic acid (1g): MS m/z: 572 (M, $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$), 444, 426, 294, 275 225, 197, 151; HREI-MS found 572.2991, calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$: 572.3134; IR (KBr): $3650 \sim 3100,2958,2927,2866,1723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.75 \sim 0.92(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H})$, $0.86\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right), 0.91(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$, $\left.28-\mathrm{H}_{3}\right), 1.17 \sim 1.70\left(6 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}\right)$, $1.50\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.75 \sim 1.95(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 18-\mathrm{H})$, $1.83\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right), 2.10 \sim 2.42(5 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 13-\mathrm{H}$, $\left.16-\mathrm{H}_{2}, 20-\mathrm{H}\right), 2.37(1 \mathrm{H}, \mathrm{dd}, J=10.9,14.9 \mathrm{~Hz}, 31-\mathrm{H})$, $2.63(1 \mathrm{H}, \mathrm{dd}, J=3.2,14.9 \mathrm{~Hz}, 31-\mathrm{H}), 3.24 \sim 3.27(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 3.65\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}}=3.2, J_{\mathrm{t}}=10.9 \mathrm{~Hz}, 25-\mathrm{H}\right)$, $3.79 \sim 3.88(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.97(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, 6-\mathrm{H})$, $4.29 \sim 4.35(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.61(1 \mathrm{H}, \mathrm{dd}, J=2.0,14.1 \mathrm{~Hz}$, $27-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{dd}, J=2.0,14.1 \mathrm{~Hz}, 27-\mathrm{H}), 4.93 \sim 5.02$ $(2 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}, 19-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.49$ $(1 \mathrm{H}, \mathrm{dd}, J=9.3,14.5 \mathrm{~Hz}, 11-\mathrm{H}), 5.63(1 \mathrm{H}, \mathrm{dd}, J=10.9$, $14.5 \mathrm{~Hz}, 10-\mathrm{H}), 5.90(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, 9-\mathrm{H})$.

30,31-Dihydroxymilbemycin A_{4} (1h): MS m/z: 574 $\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}\right), 556,446,314,296,277248,227,199$, 151; HREI-MS found: 574.3120 , calcd $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$: 574.3134; IR (KBr): 3650~3100, 2967, 2926, 2871, $1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.80 \sim 1.00$ $(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.20 \sim$
$2.10\left(9 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 18-\mathrm{H}, 20-\mathrm{H}_{2}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}\right)$, $1.37\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 32-\mathrm{H}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.88$ $\left(3 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 2.15 \sim 2.50(5 \mathrm{H}, \mathrm{m}, 5-\mathrm{OH}$, $\left.12-\mathrm{H}, 13-\mathrm{H}, 16-\mathrm{H}_{2}\right), 3.21(1 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}, 25-\mathrm{H})$, $3.27 \sim 3.30(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.44 \sim 3.68(3 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}$, $\left.30-\mathrm{H}_{2}\right), 3.96(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 6-\mathrm{H}), 4.27 \sim 4.34(2 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}, 31-\mathrm{H}), 4.63 \sim 4.74\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 4.92 \sim 4.97$ $(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 5.30 \sim 5.43(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 11-\mathrm{H}, 19-\mathrm{H})$, $5.70 \sim 5.84(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H})$.

13 β,32-Dihydroxymilbemycin A_{4} (1i): MS m/z: 574 (M, $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$), 556, 428, 295, 211, 183, 151; HREI-MS found: 574.3158, calcd, $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$: 574.3134; IR (KBr): 3650~3100, 2956, 2927, 2871, $1717 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right)$, $0.80 \sim 1.00(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 1.14\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right)$, $1.59 .\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.87\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right), 1.20 \sim 2.15(10 \mathrm{H}$, $\left.\mathrm{m}, 18-\mathrm{H}, 20-\mathrm{H}_{2}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}, 31-\mathrm{H}_{2}\right), 1.87(3 \mathrm{H}$, s, $\left.26-\mathrm{H}_{3}\right), 2.20 \sim 2.45\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{OH}, 12-\mathrm{H}, 16-\mathrm{H}_{2}\right)$, $3.25 \sim 3.29(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.44\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}}=2.8, J_{\mathrm{t}}=\right.$ $9.3 \mathrm{~Hz}, 25-\mathrm{H}), 3.55 \sim 3.65(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{d}$, $J=9.7 \mathrm{~Hz}, 13-\mathrm{H}), 3.83\left(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, 32-\mathrm{H}_{2}\right), 3.93$ $(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{OH}), 3.96(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 6-\mathrm{H}), 4.27 \sim 4.32$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.64 \sim 4.73\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 5.21 \sim 5.41$ $(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 15-\mathrm{H}, 19-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.74 \sim 5.85$ (2H, m, 9-H, 10-H).

13 $\beta, 32$-Dihydroxy-5-ketomilbemycin A_{4} (5f): MS $m / z: 572\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{9}\right), 554,295,277,259,241,211$, 183; HREI-MS found: 554.2881, calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{8}$ $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$: 554.2881 ; IR (KBr): 3650~3100, 2958, 2928, 2871, $1724 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.86\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right), 0.88 \sim 1.02(1 \mathrm{H}, \mathrm{m}$, $18-\mathrm{H}), 1.15\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.30 \sim 2.10(10 \mathrm{H}$, $\left.\mathrm{m}, 18-\mathrm{H}, 20-\mathrm{H}_{2}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}, 31-\mathrm{H}_{2}\right), 1.59(3 \mathrm{H}$, s, $\left.29-\mathrm{H}_{3}\right), 1.89 \sim 1.90\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right), 2.25 \sim 2.45(3 \mathrm{H}, \mathrm{m}$, $\left.12-\mathrm{H}, 16-\mathrm{H}_{2}\right), 3.45\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}}=2.9, J_{\mathrm{t}}=9.3 \mathrm{~Hz}, 25-\mathrm{H}\right)$, $3.49(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{OH}), 3.54 \sim 3.70(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 17-\mathrm{H}), 3.73$ $(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, 13-\mathrm{H}), 3.80 \sim 3.90\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 32-\mathrm{H}_{2}\right)$, $4.65 \sim 4.81\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 5.24 \sim 5.46(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$, $15-\mathrm{H}, 19-\mathrm{H}), 5.74 \sim 5.88(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H}), 6.54 \sim 6.56$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$).

5-epi-13 $\beta, 30$-Dihydroxymilbemycin A_{4} (6c): MS m/z: $574\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}\right), 556,538,446,428,295,277,211$, 183; HREI-MS found: 574.3155, calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$: 574.3134; IR (KBr): 3650~3100, 2960, 2927, 2873, $1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84 \sim 0.98$ $(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 32-\mathrm{H}_{3}\right), 1.13(3 \mathrm{H}$, d, $\left.J=6.4 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.34 \sim 1.82(9 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}, 20-\mathrm{H}$, $\left.22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}, 31-\mathrm{H}_{2}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.91$ $\left(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, 26-\mathrm{H}_{3}\right), 1.99 \sim 2.09(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H})$, $2.25 \sim 2.43\left(3 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 16-\mathrm{H}_{2}\right), 3.03 \sim 3.07(1 \mathrm{H}, \mathrm{m}$,
$2-\mathrm{H}), 3.35\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}}=2.4, J_{t}=9.3 \mathrm{~Hz}, 25-\mathrm{H}\right), 3.51 \sim 3.66$ $\left(3 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}, 30-\mathrm{H}_{2}\right), 3.71(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, 13-\mathrm{H})$, $3.84(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, 6-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.55 \sim$ $4.67\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 5.19 \sim 5.47(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 11-\mathrm{H}$, $15-\mathrm{H}, 19-\mathrm{H}), 5.74 \sim 5.85(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H})$.

5-epi-13 $\beta, 24$-Dihydroxymilbemycin A_{4} ($\mathbf{6 d}$): MS m/z: $574\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}\right), 556,538446,428,330,295,277$, 261, 211, 183; HREI-MS found: 574.3145, calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$: 574.3134. IR (KBr): 3650~3100, 2968, 2930, 2874, $1721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.86 \sim 0.99(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 1.04\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 32-\mathrm{H}_{3}\right)$, $1.13\left(3 \mathrm{H}, \mathrm{s}, 30-\mathrm{H}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.40$ $(1 \mathrm{H}, \mathrm{t}, J=11.7 \mathrm{~Hz}, 20-\mathrm{H}), 1.48 \sim 1.93(7 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}$, $\left.22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 31-\mathrm{H}_{2}\right), 1.59\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.91(3 \mathrm{H}, \mathrm{s}$, $\left.26-\mathrm{H}_{3}\right), 2.05 \sim 2.12(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.25 \sim 2.41(3 \mathrm{H}, \mathrm{m}$, $\left.12-\mathrm{H}, 16-\mathrm{H}_{2}\right), 3.04 \sim 3.07(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.34(1 \mathrm{H}, \mathrm{dd}$, $J=3.4,10.3 \mathrm{~Hz}, 25-\mathrm{H}), 3.54 \sim 3.64(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.72$ $(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, 13-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, 6-\mathrm{H})$, $4.04(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.55 \sim 4.67\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 5.19 \sim 5.24$ $(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 5.28 \sim 5.45(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 11-\mathrm{H}, 19-\mathrm{H})$, $5.74 \sim 5.85$ ($2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H}$).

5-epi-13 $\beta, 31$-Dihydroxymilbemycin A_{4} (6e): MS m/z: $574\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}\right), 556,428,295,277211$ 179; HREIMS found: 574.3166, calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$: 574.3134; IR (KBr): 3650~3100, 2968, 2929, 2870, $1721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86 \sim 0.99(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H})$, $0.90\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right), 1.13(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, $\left.28-\mathrm{H}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 32-\mathrm{H}_{3}\right), 1.40(1 \mathrm{H}, \mathrm{t}$, $J=11.7 \mathrm{~Hz}, 20-\mathrm{H}), 1.58\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.50 \sim 1.75(6 \mathrm{H}$, $\left.\mathrm{m}, 18-\mathrm{H}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}\right), 1.91\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right)$, $2.03 \sim 2.10(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.22 \sim 2.41(3 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}$, $\left.16-\mathrm{H}_{2}\right), 3.02 \sim 3.07(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 25-\mathrm{H}), 3.49 \sim 3.61$ $(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, 13-\mathrm{H}), 3.84(1 \mathrm{H}$, d, $J=1.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.88 \sim 3.97(1 \mathrm{H}, \mathrm{m}, 31-\mathrm{H}), 4.04(1 \mathrm{H}$, s, $5-\mathrm{H}), 4.55 \sim 4.67\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 5.18 \sim 5.24(1 \mathrm{H}, \mathrm{m}$, $15-\mathrm{H}), 5.26 \sim 5.40(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 19-\mathrm{H}), 5.41 \sim 5.43(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 5.74 \sim 5.85(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 10-\mathrm{H})$.

5-epi-13 $\beta, 32$-Dihydroxymilbemycin A_{4} (6f): MS m/z: $574\left(\mathrm{M}, \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}\right), 538,428,348,295,277$ 211, 183; HREI-MS found 574.3136, calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$: 574.3134; IR (KBr): 3650~3100, 2956, 2927, 2871, $1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84 \sim 1.00$ $(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 30-\mathrm{H}_{3}\right), 1.14(3 \mathrm{H}$, d, $\left.J=6.4 \mathrm{~Hz}, 28-\mathrm{H}_{3}\right), 1.34 \sim 1.80(9 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}, 20-\mathrm{H}$, $\left.22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}, 24-\mathrm{H}, 31-\mathrm{H}_{2}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, 29-\mathrm{H}_{3}\right), 1.90$ $\left(3 \mathrm{H}, \mathrm{s}, 26-\mathrm{H}_{3}\right), 1.98 \sim 2.05(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.20 \sim 2.44$ $\left(4 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 16-\mathrm{H}_{2}, \mathrm{OH}\right), 3.03 \sim 3.07(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $3.44\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}}=2.9, J_{\mathrm{t}}=9.3 \mathrm{~Hz}, 25-\mathrm{H}\right), 3.55 \sim 3.67(1 \mathrm{H}$, $\mathrm{m}, 17-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{dd}, J=2.9,9.8 \mathrm{~Hz}, 13-\mathrm{H}), 3.75 \sim 4.05$ (1 H, brs, OH), $3.78 \sim 3.87\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 32-\mathrm{H}_{2}\right), 4.02$
$(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.54 \sim 4.66\left(2 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}_{2}\right), 5.20 \sim 5.42(4 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}, 11-\mathrm{H}, 15-\mathrm{H}, 19-\mathrm{H}), 5.73 \sim 5.84(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$, $10-\mathrm{H})$.

References

1) Takiguch, Y.; H. Mishima, M. Okuda, M. Terao, A. Aoki \& R. Fukuda: Milbemycins a new family of macrolide antibiotics; Fermentation, isolation and physicochemical properties. J. Antibiotics 33: 1120~1127, 1980
2) Okazaki, T.; M. Ono, A. Aoki \& R. Fukuda: Milbemycins, a new family of macrolide antibiotics: producing organism and its mutants. J. Antibiotics 36: 438~441, 1983
3) Mishima, H.; J. Ide, S. Muramatsu \& M. Ono: Milbemycins, a new family of macrolide antibiotics. Structure determination of milbemycins D, E, F, G, H, J and K. J. Antibiotics 36: 980~990, 1983
4) Naito, S.; T. Nanba, Y. Owatari, Y. Nakada, S. Muramatsu \& J. Ide: Milbemycin derivatives: modification at the C-5 position. J. Antibiotics 47: 233~242, 1994
5) Saito, A.; S. Naito, M. Kobayashi, M. Tsuchiya, T. Toyama, S. Kaneko, T. Nanba \& Y. Morisawa: Synthesis and anthelmintic activity of 13-alkoxymilbemycin derivatives. J. Antibiotics 46: 1252~1264, 1993
6) Nakagawa, K.; A. Torikata, K. Sato \& Y. Tsukamoto: Microbial conversion of milbemycins; 30 -oxidation of milbemycin A_{4} and related compounds by Amycolata autotrophica and Amycolatopsis mediterranei. J. Antibiotics 43: 1321~1328, 1990
7) Nakagawa, K.; S. Miyakoshi, A. Torikata, K. Sato \& Y. Tsukamoto: Microbial conversion of milbemycins; hydroxylation of milbemycin A_{4} and related compounds by Cunninghamella echinulata ATCC 9244. J. Antibiotics 44: 232~240, 1991
8) Nakagawa, K.; K. Sato, T. Okazaki \& A. Torikata: Microbial conversion of milbemycins; 13 $\beta, 29$-dihydroxylation of milbemycins by soil isolate Streptomyces cavourensis. J. Antibiotics 44: 803~805, 1991
9) Nakagawa, K.; K. Sato, Y. Tsukamoto \& A. Torikata: Microbial conversion of milbemycins, 29-hydroxytion of milbemycins by genus Syncephalastrum. J. Antibiotics 45: 802~805, 1992
10) Nakagawa, K.; K. Sato, Y. Tsukamoto \& A. Torikata: Microbial conversion of milbemycins; 28-hydroxylation of milbemycins by Amycolata autotrophica. J. Antibiotics 46: 518~519, 1993
11) Nakagawa, K.; K. Sato, Y. Tsukamoto, T. Okazaki \& A. Torikata: Microbial conversion of milbemycins; microbial conversion of milbemycins A_{4} and A_{3} by Streptomyces libani. J. Antibiotics 47: 502~506, 1994
12) Schulman, M.; P. Doherty, D. Zink \& B. Arison: Microbial conversion of avermectins by Saccharopolyspora erythrea: hydroxylation at C28. J. Antibiotics 46: 1016~1019, 1993
13) Chartrain, M.; R. White, R. Goegelman, K. Gbewonyo \& R. Greasham: Bioconversion of avermectin into $27-\mathrm{OH}$ avermectin. J. Ind. Microbiol. 6: 279~284, 1990
14) Tsukamoto, Y.; K. Sato, S. Mio, S. Sugai, T. Yanai, N. Kitano, S. Muramatsu, Y. Nakada \& J. Ide: Synthesis of 5-keto-5-oxime derivatives of milbemlycins and their activities against microfilariae. Agric. Biol. Chem. 55: 2615~2621, 1991
15) Sato, K. \& T. Kinoto (Sankyo): Preparation of milbemycin derivatives as antibiotics. Jpn. Kokai 70,379 (1987) Sept. 24, 1985 [CA 107: 23177e, 1987]
16) Tsukamoto, Y.; K. Sato, T. Kinoto \& T. Yanai: 13β-Hydroxylation of milbemycins by selenium dioxide. Bull. Chem. Soc. Jpn. 6: 3300~3307, 1992

[^0]: ${ }^{2}+1: 0.5 \sim 5 \%,+2: 5 \sim 15 \%,+3: 15 \%-$, tr: trace (HPLC analysis),
 ${ }^{\text {b }} \mathbf{1 b}$: 13β-hydroxymilbemycin $A_{4}, 1 \mathrm{l}: 30$-hydroxymilbemycin A_{4}, 1e: 31hydroxymilbemycin A_{4}, 1f: 32-hydroxymilbemycin A_{4}, 1d: 24-hydroxymilbemycin A_{4}.

